Long-Term Study of the Relationship between Precipitation and Aquatic Vegetation Succession in East Taihu Lake, China
نویسندگان
چکیده
Based on long-term rainfall measurements (1956-2012), water level records (1956-2006), and aquatic plants field survey data (1960-2014), the relationship between precipitation and aquatic vegetation succession in east Taihu Lake, China, is studied. Neither abrupt changes nor any trends were found in the annual rainfall series in Taihu Lake during the studied period (1956-2012). However, for seasonal variations, statistically significant decreases are found in spring and autumn, while the rainfall in winter exhibits statistically significant increase. No significant trend was obtained in summer. A "dry" period was detected in our studied period (1963/1964~1978/1979). Total annual rainfall was significantly positively correlated to the number of rain-days (r = 0.59) and the water level (r = 0.84). Our results indicate that the variations of rainfall and water level may have an impact on the aquatic plants in Taihu Lake. The dry period may be not suitable for the growth of the aquatic plants. All aquatic plants in Taihu Lake were dramatically reduced in the dry period, especially for submerged macrophytes and floating-leaf macrophytes. Our results may be helpful for the aquatic restoration in the future.
منابع مشابه
Spatio-Temporal Variability of Aquatic Vegetation in Taihu Lake over the Past 30 Years
It is often difficult to track the spatio-temporal variability of vegetation distribution in lakes because of the technological limitations associated with mapping using traditional field surveys as well as the lack of a unified field survey protocol. Using a series of Landsat remote sensing images (i.e. MSS, TM and ETM+), we mapped the composition and distribution area of emergent, floating-le...
متن کاملDetecting Aquatic Vegetation Changes in Taihu Lake, China Using Multi-temporal Satellite Imagery
We have measured the water quality and bio-optical parameters of 94 samples from Taihu Lake in situ and/or in the lab between June 10-18, 2007. A transparencyassisted decision tree was developed to more accurately divide the aquatic vegetation zone into a floating vegetation-dominated zone and a submerged vegetation-dominated zone, whose respective present biomass retrieval models were easily d...
متن کاملAquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration
Terrestrial and aquatic ecosystem degradation is widely recognized as a major global environmental and development problem. Although great efforts have been made to prevent aquatic ecosystem degradation, the degree, extent and impacts of this phenomenon remain controversial and unclear, such as its driving mechanisms. Here, we present results from a 17-year field investigation (1998-2014) of wa...
متن کاملArtificial Regulation of Water Level and Its Effect on Aquatic Macrophyte Distribution in Taihu Lake
Management of water levels for flood control, water quality, and water safety purposes has become a priority for many lakes worldwide. However, the effects of water level management on the distribution and composition of aquatic vegetation has received little attention. Relevant studies have used either limited short-term or discrete long-term data and thus are either narrowly applicable or eas...
متن کاملLake Topography and Wind Waves Determining Seasonal-Spatial Dynamics of Total Suspended Matter in Turbid Lake Taihu, China: Assessment Using Long-Term High-Resolution MERIS Data
Multiple comprehensive in situ bio-optical investigations were conducted from 2005 to 2010 and covered a large variability of total suspended matter (TSM) in Lake Taihu to calibrate and validate a TSM concentration estimation model based on Medium Resolution Imaging Spectrometer (MERIS) data. The estimation model of the TSM concentration in Lake Taihu was developed using top-of-atmosphere (TOA)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017